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Abstract
We investigate the phase diagram of the Heisenberg antiferromagnet on the
square lattice with two different nearest-neighbour bonds J and J ′ (J–J ′ model)
at zero temperature. The model exhibits a quantum phase transition at a critical
value J ′

c > J between a semi-classically ordered Néel and a magnetically
disordered quantum paramagnetic phase of valence-bond type, which is driven
by local singlet formation on J ′ bonds. We study the influence of spin quantum
number s on this phase transition by means of a variational mean-field approach,
the coupled cluster method and the Lanczos exact-diagonalization technique.
We present evidence that the critical value J ′

c increases with growing s according
to J ′

c ∝ s(s + 1).

1. Introduction

The study of quantum antiferromagnets in low-dimensional systems has attracted much
attention in recent years, both theoretically and experimentally. In particular, quantum
phase transitions are in the focus of interest; see e.g. [1–3]. For these zero-temperature
transitions thermal fluctuations are irrelevant and the transition between different quantum
phases (e.g. between magnetically ordered and disordered phases) is driven purely by quantum
fluctuations. For the quantum spin Heisenberg antiferromagnet (HAFM) on two-dimensional
lattices the interplay of interactions and fluctuations is well balanced and the existence of semi-
classical magnetic long-range order depends on the degree of competition between bonds [4, 5].
Competition between bonds in spin systems may appear as frustration, which is present in
classical as well as in quantum spin systems. In quantum systems a direct competition between
bonds also exists which may lead to local singlet formation on certain antiferromagnetic
bonds (or plaquettes of four spins) if these bonds are increased in strength. By tuning the
degree of competition zero-temperature order–disorder phase transitions can be realized. The
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existence of magnetically disordered quantum paramagnetic ground states in (quasi-)two-
dimensional Heisenberg systems has been recently demonstrated, e.g. for SrCu2(BO3)2 [6, 7]
and CaV4O9 [8, 9].

A canonical model to study the competition in a frustrated quantum spin HAFM is the
J1–J2 model on the square lattice, where the frustrating J2 bonds plus quantum fluctuations
lead to a second-order transition from Néel ordering to a quantum paramagnetic phase, see
e.g. [10–15]. A widely studied model describing competition without frustration and showing
the ‘melting’ of semi-classical Néel order by local singlet formation is the HAFM on the
square lattice with two non-equivalent nearest-neighbour bonds J and J ′ (J–J ′ model) [16–
23]. In these papers on the J–J ′ model the extreme quantum case s = 1/2 is considered
and the competition can be tuned by variation of the exchange bond J ′. One finds a second-
order transition from the quasi-classically Néel ordered phase to a dimerized singlet phase at
J ′

c ≈ 2.5 . . . 2.9J . It is argued in [20, 21] that the quantum phase transition is of the same
universality class as the thermal phase transition of three-dimensional classical Heisenberg
model.

The strength of quantum fluctuations within this model can be varied either by anisotropy
or by spin quantum number. Indeed its was found in [20] for the J–J ′ model that the critical
J ′

c for the XY model is significantly larger than for the spin rotationally invariant Heisenberg
model. The influence of an Ising exchange anisotropy �I leads also to an increase of J ′

c which
is in good approximation proportional to �I [22]. The role of the spin quantum number s
was not systematically studied. Some results for spin models with s = 1 can be found in,
e.g., [21, 24].

In the present paper we study the ground state phase transition between a Néel ordered
phase and a dimerized singlet phase of the J–J ′ model with spin quantum number s =
1/2, 1, 3/2 and 2 using a variational mean-field-like approach (MFA), the coupled cluster
method (CCM) and exact diagonalization (ED) of finite systems.

2. Model

We consider the J–J ′ model on a square lattice, i.e. an HAFM with two kinds of
antiferromagnetic nearest-neighbour bonds J and J ′ (see figure 1) described by the
Hamiltonian

H = J
∑
〈i j〉1

si · s j + J ′ ∑
〈i j〉2

si · s j , (1)

where the sums over 〈i j〉1 and 〈i j〉2 represent sums over the nearest-neighbour bonds, shown
in figure 1 as dashed and solid lines, respectively. We consider spin operators s2

i = s(s + 1) of
spin quantum number s = 1/2, 1, 3/2 and 2.

Each square-lattice plaquette consists of three J bonds and one J ′ bond. In what follows
we set J = 1 and consider J ′ � 1 as the parameter of the model. In the classical limit the
ground state is the symmetry breaking Néel state. However, quantum fluctuations may lead to
a rotationally invariant dimerized valence-bond state for large enough J ′.

3. Variational mean-field-like approach

In this section we use the MFA to calculate the ground-state magnetic order parameter of the
J–J ′ model (1). For the spin-half HAFM this approach has been successfully applied to bilayer
systems [25], to the isotropic [2, 18] and anisotropic [22] J–J ′ model on the square lattice and
on the 1/5 depleted square lattice for CaV4O9 [5], but also on the strongly frustrated HAFM
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Figure 1. Illustration of arrangement of bonds in the J–J ′ model on the square lattice (equation (1)):
J —dashed lines; J ′—solid lines; A and B characterize the two sublattices of the classical Néel
ground state.

on the star lattice [26]. In this paper we extend the basic ideas of this approach to higher spin
quantum numbers s = 1, 3/2 and 2.

We start with the two uncorrelated mean-field-like states, namely the Néel state |φMF1〉 =
|+s〉|−s〉|+s〉|−s〉 . . . and the dimerized rotationally invariant singlet product state (valence-
bond state) |φMF2〉 = ∏

〈i j〉2
|{i, j}s〉, where the product runs over all J ′bonds; see (1). |{(i, j)}s〉

in |φMF2〉 is a singlet state of two spins s, i.e. we have |{i, j}s=1/2〉 = 1√
2
[|+ 1

2 〉|− 1
2 〉−|− 1

2 〉|+ 1
2 〉,

|{i, j}s=1〉 = 1√
3
[|+1〉|−1〉−|0〉|0〉+ |−1〉|+1〉], |{i, j}s=3/2〉 = 1

2 [|+ 3
2 〉|− 3

2 〉−|+ 1
2 〉|− 1

2 〉+

|− 1
2 〉|+ 1

2 〉−|− 3
2 〉|+ 3

2 〉], |{i, j}s=2〉 = 1√
5
[|+2〉|−2〉−|+1〉|−1〉+|0〉|0〉−|−1〉|+1〉+|−2〉|+2〉].

In order to describe the transition between both states we consider for the different spin
quantum numbers respective uncorrelated product trial states of the form

|�s=1/2
var 〉 =

∏
〈i j〉2

1√
1 + a2

[∣∣∣∣+1

2

〉∣∣∣∣−1

2

〉
− a

∣∣∣∣−1

2

〉∣∣∣∣+1

2

〉]
(2)

|�s=1
var 〉 =

∏
〈i j〉2

1√
1 + b2

1 + b2
2

[|+1〉|−1〉 − b1|0〉|0〉 + b2|−1〉|+1〉] (3)

|�s=3/2
var 〉 =

∏
〈i j〉2

1√
1 + c2

1 + c2
2 + c2

3

[∣∣∣∣+3

2

〉∣∣∣∣−3

2

〉
− c1

∣∣∣∣+1

2

〉∣∣∣∣−1

2

〉

+ c2

∣∣∣∣−1

2

〉∣∣∣∣+1

2

〉
− c3

∣∣∣∣−3

2

〉∣∣∣∣+3

2

〉]
(4)

|�s=2
var 〉 =

∏
〈i j〉2

1√
1 + d2

1 + d2
2 + d2

3 + d2
4

[|+2〉|−2〉 − d1|+1〉|−1〉

+ d2|0〉|0〉 − d3|−1〉|+1〉 + d4|−2〉|+2〉], (5)

where in the two-spin states |n〉|m〉 the first bra vector belongs to site i and the second to site
j of a J ′ bond. The trial wavefunctions depend on the variational parameters a; b1, b2; c1, c2,
c3; d1, d2, d3, d4 and interpolate between the valence-bond state |φMF2〉 realized for a = 1;
b1 = b2 = 1; c1 = c2 = c3 = 1; d1 = d2 = d3 = d4 = 1 and the Néel state |φMF1〉 for a = 0;
b1 = b2 = 0; c1 = c2 = c3 = 0; d1 = d2 = d3 = d4 = 0, respectively. The ground-state
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energy per site es
var = 〈�s

var|H |�s
var〉/N is calculated as

es=1/2
var (a) = − J ′

2

a + 1
4 (1 + a2)

1 + a2
− 3

2

(1 − a2)2

4(1 + a2)2
(6)

es=1
var (b1, b2) = − J ′

2

2b1 + 2b1b2 + 1 + b2
2

1 + b2
1 + b2

2

− 3

2

(1 − b2
2)

2

(1 + b2
1 + b2

2)
2

(7)

es=3/2
var (c1, c2, c3) = − J ′

2

3c1 + 4c1c2 + 3c2c3 + 1
4 (9 + c2

1 + c2
2 + 9c2

3)

1 + c2
1 + c2

2 + c2
3

− 3

2

(3 + c2
1 − c2

2 − 3c2
3)

2

4(1 + c2
1 + c2

2 + c2
3)

2
(8)

es=2
var (d1, d2, d3, d4) = − J ′

2

4d1 + 6d1d2 + 6d2d3 + 4d3d4 + d2
1 + 4 + d2

3 + 4d2
4

1 + d2
1 + d2

2 + d2
3 + d2

4

− 3

2

(2 + d2
1 − d2

3 − 2d2
4 )2

(1 + d2
1 + d2

2 + d2
3 + d2

4 )2
. (9)

The relevant order parameter describing the Néel order is the sublattice magnetization
M = 〈�s

var|sz
i∈A|�s

var〉. Using equations (2)–(5) we obtain

Ms=1/2(a) = 1 − a2

2 + 2a2
(10)

Ms=1(b1, b2) = 1 − b2
2

1 + b2
1 + b2

2

(11)

Ms=3/2(c1, c2, c3) = 3 + c2
1 − c2

2 − 3c2
3

2(1 + c2
1 + c2

2 + c2
3)

(12)

Ms=2(d1, d2, d3, d4) = 2 + d2
1 − d2

3 − 2d2
4

1 + d2
1 + d2

2 + d2
3 + d2

4

. (13)

We minimize E = 〈�var|H |�var〉 with respect to the variational parameters. As a result
we obtain an analytic expression for a in the case of s = 1/2, but a set of two, three and four
coupled nonlinear equations for s = 1, 3/2 and 2 to determine the variational parameters. As
reported in [18, 2] the sublattice magnetization for s = 1/2 is Ms=1/2(J ′) = 1

2

√
1 − (J ′/3)2

for J ′ � 3 but zero for J ′ > 3. Furthermore, one can express the ground-state energy as a
Landau-type function of M , es=1/2

var = − 3
8 J ′ + 1

2 (J ′ − 3)M2 + 1
2 J ′M4, indicating the molecular

field-like nature of the approach. For s = 1, 3/2 and 2 we have to solve the corresponding set
of nonlinear equations numerically. We show M(J ′) in figure 2. M(J ′) vanishes at a critical
point J ′

c = 3 (s = 1/2), J ′
c = 8 (s = 1), J ′

c = 15 (s = 3/2) and J ′
c = 24 (s = 2), respectively.

The corresponding critical index is the mean-field index 1/2.
The sequence of critical points for s = 1/2, . . . , 2 is precisely described by Jc(s) =

4
3 s(s + 1)(z − 1), where z = 4 is the coordination number of the square lattice. Although
we do not have results for s > 2, we argue that due to the systematic character of the MFA
approach it seems likely that this expression is also valid for s > 2.

4. Coupled cluster method (CCM)

We now briefly describe the general CCM formalism; for further details the interested reader
is referred to [27, 28, 30, 29]. In order to calculate the many-body ground state, we start with
a normalized reference or model state |�〉. We chose the Néel state as the reference state |�〉
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Figure 2. Sublattice magnetization M/s versus J ′ calculated by the variational mean-field-like
approach (MFA), see text.

in order to treat the J–J ′ model using the CCM. It is convenient to perform a rotation of the
local axis of the up spins such that all spins in the reference state align in the same direction,
namely along the negative z-axis, such that we have |�〉 = |−s〉|−s〉|−s〉|−s〉 · · ·. We define
a set of multi-spin creation operators C+

I = s+
r , s+

r s+
l , s+

r s+
l s+

m, . . .. With this definition of the
C+

I we have 〈�|C+
I = 0 = CI |�〉, where CI is the Hermitian adjoint of C+

I . The CCM ket and
bra ground states are then given by

|�〉 = eS|�〉, S =
∑
I �=0

SI C+
I , (14)

〈�̃| = 〈�|S̃e−S, S̃ = 1 +
∑
I �=0

S̃I CI . (15)

The correlation operators S and S̃ contain the correlation coefficients SI and S̃I which have
to be determined. Using the Schrödinger equation, H |�〉 = E |�〉, we can now write
the ground-state energy as E = 〈�|e−S H eS|�〉. The sublattice magnetization is given by
M = −〈�̃|sz

i |�〉.
In order to determine the correlation coefficientsSI and S̃I , we require that the expectation

value H̄ = 〈�̃|H |�〉 is a minimum with respect to SI and S̃I . If we were able to take into
account all possible multispin configurations in the correlation operators S and S̃ the CCM
formalism would be exact. However, for the considered quantum spin model we have to use
approximation schemes to truncate the expansion of S and S̃ in equations (14) and (15). As
in [27–29], we use the SUBn–n approximation scheme, where we include only n spin flips in
all configurations (or lattice animals in the language of graph theory) which span a range of no
more than n adjacent lattice sites. Note that this approximation for s = 1/2 is equivalent to the
LSUBn approximation [27–29]. Since the approximation becomes exact in the limit n → ∞
it is useful to extrapolate the ‘raw’ CCM–SUBn–n results to the limit n → ∞. Although an
exact scaling theory for SUBn–n results is not known, there is empirical experience [18, 27–
29] of how the order parameter for antiferromagnetic spin models scales with n. In accordance
with those findings we use M(n) = M(∞)+a1(1/n)+a2(1/n)2 to extrapolate to n → ∞. We
note that we take a value of M(∞) tending to zero to indicate the critical point J ′

c (see figure 3).
The values for J ′

c obtained by extrapolation of the SUBn–n results for M are, however, found
to be slightly too large [18, 22]. Therefore, it is more favourable to consider the inflection
points of the M(J ′) curve for the SUBn–n approximation, assuming that the true M(J ′) curve
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Figure 3. Sublattice magnetization M/s versus J ′ for spin quantum number s = 1 using the
coupled cluster method (CCM); see the text.

will have a negative curvature up to the critical point. For increasing n the inflection point
J ′

inf approaches the critical point J ′
c. The inflection points for the SUBn–n approximation we

can again extrapolate to the limit n → ∞ using J ′
inf(n) = J ′

inf (∞) + b1(1/n) + b2(1/n)2 and
interpret J ′

inf (∞) as the critical value J ′
c.

In principle it is possible to apply the CCM for arbitrary spin quantum number s. However,
within the used SUBn–n approximation scheme for higher s additional problems appear,
namely

(i) the number of fundamental configurations (lattice animals) NF increases with s, which
makes the calculations on a certain level of approximation n more ambitious, and

(ii) the total number of basis states grows drastically with s according to sN and as a
consequence the SUBn–n approximation may become less reliable.

While the latter point is irrelevant for systems where the quantum ground state is close to the
reference state (i.e. in our model in the case of well pronounced Néel order) it becomes relevant
if the quantum ground state is far from the reference state (i.e. in our model when Néel order
breaks down). Hence the results for higher spin quantum numbers must be taken with extra
care.

We have calculated CCM results within the SUBn–n approximation for n = 2, 4 and 6
for s = 1/2, 1, 3/2, 2. For spin 1/2 results for n = 8 are also available (see [18, 22]). First
we report the values for J ′

c for spin s = 1/2 (see also [18, 22]). The extrapolation of the
SUBn–n data for M with n = 2, 4 and 6 as described above leads to J ′

c ≈ 3.5. However, as
discussed above the extrapolation of the order parameter tends to overestimate J ′

c (note that J ′
c

obtained this way is even larger than the value found within the MFA) and the extrapolation
of the inflection point is favourable. We found as inflection points of the Ms(J ′) curves
J ′

inf (n) = 3.60 (SUB2–2), 3.33 (SUB4–4) and 3.13 (SUB6–6), leading to an extrapolated
value of J ′

c = J ′
inf(∞) = 2.56. We mention that the consideration of SUB8–8 data leads to a

slight modification of J ′
c to J ′

c = J ′
inf(∞) = 2.54, only.

We now consider the case s = 1, where the results for the order parameter M are given
in figure 3. Clearly we see the weakening of the magnetic order on increasing J ′. The
extrapolation of the SUBn–n data for M with n = 2, 4 and 6 leads to J ′

c ≈ 11.7, i.e. we get the
same tendency as for the variational MFA, that J ′

c increases with s. Again the extrapolation of
the order parameter leads to an overestimation of J ′

c. This overestimation is connected with
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Figure 4. Extrapolated sublattice magnetization M/s versus J ′ for various spin quantum numbers
s using the coupled cluster method (CCM); see the text.

the change in the sign of curvature of M(J ′) seen in figure 3. The favourable extrapolation
of the inflection points leads to J ′

c = J ′
inf(∞) ≈ 6.4, where the inflection points for the

different levels of SUBn–n approximations are J ′
inf (n = 2) = 3.93, J ′

inf(n = 4) = 6.04 and
J ′

inf (n = 6) = 6.36.
Finally, we consider spin s = 3/2 and 2. The results for the extrapolated sublattice

magnetization for spin values s = 1/2, 1, 3/2 and 2 using the SUBn–n approximation for
n = 2, 4 and 6 are shown in figure 4. Evidently, the sublattice magnetization M/s increases
with s, demonstrating the decreasing influence of quantum fluctuations with growing spin
quantum number. The critical value for s = 3/2 is obtained as J ′

c ≈ 18.5 which is again
too large in comparison to the MFA result. The extrapolation of the inflection points leads to
J ′

c ≈ 10.9. Note that we have calculated M using the CCM up to J ′ = 100 for s = 2. However,
we were unable to find a vanishing M (i.e., the critical value J ′

c obtained by extrapolation of
the order parameter would be larger than 100). Results for the point of inflection of M were
similarly contradictory, and so the results for the position of the phase transition point predicted
by the CCM for s = 2 are not included here.

We conclude that the CCM SUBn–n approximation is inappropriate to describe the
quantum phase transition correctly for higher spin values (namely, s > 3/2) at the levels
of approximation currently available for present-day computers. However, we do observe that
the tendency for critical value J ′

c to increase with growing s is observed using the CCM for
s � 3/2, as expected. This problem of reliability might be resolved by going to higher orders
of truncation index m, although we note that the computational problem is very difficult (e.g.,
with NF = 108 033 for SUB8–8 for s = 3/2) and so this is not considered here. We note
that LSUBn calculations do not place a restriction on the total number of spin flips used in the
CCM correlation operators, although the fundamental clusters are restricted to remain within
a locale defined by n. However, this again leads to an extremely large number of fundamental
clusters even for low values of n and for higher spin quantum numbers, and so LSUBn is not
considered here. Mean-field model states (e.g. based on the variational states in section 3)
might also provide enhanced results for the CCM.

As a byproduct we also present in table 1 the results for the sublattice magnetization M/s
for higher spin values for the pure square lattices (J ′ = 1), which are so far not calculated
within CCM. We point out that for the pure square lattice the results for M are expected to be
quite reliable, since the true quantum ground state is close to the reference state used as the
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Table 1. CCM results for the ground state of the Heisenberg antiferromagnet on the square lattice
with spin quantum number s = 3/2 and 2 using the SUBn–n approximation with n = {2, 4, 6}.
Note that NF indicates the number of fundamental clusters at each level of approximation. For
comparison we present the results of the second-order spin wave theory (SWT) [31].

s = 3/2 s = 2

NF Eg/N M/s NF Eg/N M/s

SUB2–2 1 −4.943 927 0.936 174 1 −8.593 510 0.950 368
SUB4–4 15 −4.976 427 0.910 266 15 −8.633 108 0.931 09
SUB6–6 461 −4.982 685 0.898 16 461 −8.640 356 0.922 284
SUB∞ — −4.987 8 0.868 7 — −8.646 1 0.901 1
SWT — −4.986 2 0.869 2 — −8.644 2 0.901 8

starting point. This is indeed confirmed by comparison with high precision second-order spin
wave results [31] also presented in table 1. We mention that due to the reduced symmetry the
number of fundamental configurations NF increases in the case of J ′ �= J . For SUB6–6 we
find NF = 267, 1420, 1744 and 1744 for s = 1/2, 1, 3/2 and 2, respectively. Note that NF for
s = 3/2 and 2 is equal only up to SUB6–6 but differs for higher levels of approximation. For
completeness we also give the sublattice magnetization for s = 1/2, M/s = 0.63 (note that
this value can be improved by also considering SUB8–8 for the extrapolation, which yields
M/s = 0.62 [28]), and for s = 1, M = 0.81 (see also [30]).

5. Exact diagonalization (ED)

In addition to the MFA and the CCM we use the exact diagonalization Lanczos technique to
calculate the order parameter for finite square lattices with periodical boundary conditions. The
calculations are performed using spinpack [32]. As usual for ED (see e.g. [5]) we calculate
the square of the sublattice magnetization M2 defined by M2 = 〈[ 1

N

∑N
i=1 τi si ]2〉 with the

staggered factor τi∈A = +1, τi∈B = −1. For the finite-size scaling of M2 we use the standard
three-parameter formula [33, 34, 5] M2(N) = M2(∞) + c1 N−1/2 + c2 N−1. The critical value
J ′

c is that point where M2(∞) vanishes. Again we are faced with the problem that the method
becomes less reliable for larger quantum numbers s. While for s = 1/2 one can calculate the
GS for the J–J ′ model up to N = 32 [18, 20, 22] sites, one is restricted to lattices of up to
N = 20 for s = 1, up to N = 16 for s = 3/2 and up to N = 10 for s = 3/2. Since for s = 2
we have only two lattices (N = 10 and 8) with the full lattice symmetry, we do not consider
s = 2 within ED. To treat all three cases in a consistent way we consider only N = 8, 10
and 16 for s = 1/2, 1 and 3/2. It is clear that the resulting finite-size extrapolation remains
quite poor and only allows some qualitative conclusions. We present for illustration the results
for the order parameter M for s = 1 in figure 5. The critical values obtained by finite size
extrapolation of M are J ′

c ≈ 2.2 for s = 1/2, J ′
c ≈ 5.5 for s = 1 and J ′

c ≈ 10.1 for s = 3/2.
These data confirm the tendency found by MFA and CCM that the increase of J ′

c with s is
stronger than linear.

6. Summary and discussion

We have investigated the ground-state magnetic order parameter for the square-lattice isotropic
Heisenberg antiferromagnet with two kinds of nearest-neighbour exchange bonds (J–J ′model)
by using a variational mean-field approach (MFA), the coupled cluster method (CCM) and exact
diagonalizations (ED). In particular, we have studied the influence of the spin quantum number
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Figure 5. Sublattice magnetization M/s versus J ′ for spin quantum number s = 1 using exact
diagonalization of finite lattices of N = 8, 10 and 16; see the text.
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Figure 6. The critical value J ′
c versus spin quantum number s obtained by different methods. MFA,

variational mean-field approach (see section 3); CCM I, coupled cluster method (extrapolation of
the order parameter, see section 4); CCM II, coupled cluster method (extrapolation of the inflection
point; see section 4); ED, exact diagonalization (see section 5).

s on the quantum critical point J ′
c. Our results for J ′

c are presented in figure 6, and we note
that a transition from a semi-classically Néel ordered phase to a magnetically disordered phase
occurs at this point. Obviously, there is an increase of J ′

c with s signalling the diminishing of
quantum effects. We have presented evidence that the critical value J ′

c increases with growing
s according to J ′

c ∝ s(s + 1).
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